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ABSTRACT: We rewrite the loop equations of the hermitian matrix model, in a way which
involves no derivative with respect to the potential, we compute all the correlation func-
tions, to all orders in the topological 1/N? expansion, as residues on an hyperelliptical
curve. Those residues, can be represented as Feynman graphs of a cubic field theory on

the curve.
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1. Introduction

We consider the formal hermitian matrix integral:
Z :/ AM e NtV (M) (1.1)
Hy

where M is a N x N hermitian matrix, dM is the product of Lebesgue measures of all
real components of M. V(z) is a polynomial of degree d + 1 > 2 called the potential. Z is
called the partition function.

Our goal is to compute the large-N limit, as well as the full 1/N? expansion, of

the following formal expectation values ({ ) is the average computed with the probability
measure e~ N VM) gpr):

— 1 1 1
W = NF-2 (¢ t St 1.2
K@, m) <rx1—M er—M rxk—M>C (12)
Wk(.%'l,...,l'k) = lim Wk(.%'l,...,l'k) (13)
N—o0

where the subscript ¢ means connected part or cumulant.

When Z is considered as a formal generating function, it is well known [[§] that the cor-

relation function Wy (z1,...,x;) has a 1/N? expansion, also called topological expansion,
noted:
. o
Wit o) == > NW (@, o) (1.4)
h=0

Let us emphasize that in general Z is not a convergent integral, the partition function
as well as the W},’s are to be understood as formal series in the coefficients of the potential,
see [[(7] for details.

In that formal sense, the expectation value of a product of k traces is the combina-
toric generating function for enumerating discrete surfaces with k holes, and the variables
r1,...,2 are fugacities for the lengths of the k boundaries [P, [3, f, BS]. It is well
known [[[5] that the power of N associated to each discrete surface is its Euler charac-
teristic y. For a genus h connected surface with k holes, we have y = 2 — kK — 2h. This
is why the quantity (.Z) has a large-N limit. The large-N limit (.3) Wy (z1,...,21) =
I/Vk0 (21,...,x)) is therefore the generating function of genus zero discrete surfaces with
k boundaries, and each Wéh) (x1,...,7k) is the generating function of genus h discrete
surfaces with k& boundaries.

The problem of computing the W’s has been addressed many times, for various ap-
plications to physics and mathematics. Indeed, the correlation functions of eigenvalues
(and thus of traces of powers) of a random matrix have a universal behavior which (this is
what universality means) is observed in many physical phenomena, ranging from solid state
physics (quantum chaos, mesoscopic conductors, see [B5, B9 ) to high energy physics (nu-
clear physics [B3], Quantum chromodynamics [B§], string theory [[[6]), and in mathematics
(distribution of Riemann zeta’s zeroes [[).



In the 90’s, random matrices were extensively studied in the context of quantum gravity
(see [LH]), which is nothing but statistical physics on random discretized surfaces, i.e. the
combinatorial problem of enumerating discrete surfaces of given topology, as described
above.

Quantum gravity is also deeply related to conformal field theory (CFT), when one
takes a “double scaling limit” where very large discrete surfaces are dominant, in other
words, CFT is the limit of continuous surfaces. Depending on the limit chosen, and on the
coefficients of the potential V' (x), one may reach different double scaling limits, which are
in relationships with the (p,¢ = 2) minimal models in CFT. All the critical exponents of
such surfaces are given by KPZ’s formula [B1].

It is thus expected, that in appropriate double scaling limits, expectation values of the
form ([L.9), can be computed from a quantum field theory, namely Liouville’s theory.

Here, without taking any double scaling limit,we will find a quantum-field-theory-like
Feynman expansion for the W (21, ..., Tt).

The Wj’s have been computed in the literature by various methods. A formula of
Dyson [[§ gives the W}’s for finite N in terms of orthogonal polynomials, but is not very
convenient for large-N limit calculations, and is not convenient for the formal model. The
method of loop equations [E, B7, B, i, B3| gives recursion relations between the W}’s,
which simplify in the large-IN limit. The loop equations have been known for a while,
and give a very effective algorithm for computing explicitly the W}’s (see [, B, H]). The
method developed by [B, B] for computing the W}’s, consists in computing W; and then
obtain the Wj’s by taking iterated derivatives with respect to the potentials (loop insertion
method). This method has two drawbacks: first in order to find Wy, one should know
W), for all potentials (in particular one must take infinite degree potentials); second, before
computing Wy, one has to compute Wy, Ws, ..., Wy_q, i.e. it has not been found how to
integrate the recursion formulae of [J].

Here we consider new loop equations, which allow to find recursion relations between
the Wy’s, without taking any derivatives with respect to the potential (we may work with
fixed potential). Moreover, the recursion relations for the W,gh)’s obtained in this paper
can be integrated: the k™-loop function to order N2 is a k-legs, h-loops Feynman graph
of a ¢3 theory living on an hyperelliptical curve.

Outline:

- in section P we introduce the notations.
- in section [] we introduce some basic tools of algebraic geometry.

- in section f we write and solve the loop equations to large-N leading order, i.e. we
compute the Wp’s.

- in section [ we write and solve the loop equations recursively to each order in 1 /N2,
i.e. we compute the Wkgh)’s.

- in section | we do explicitly the computation in the one-cut case.

- in section [] we conclude by presenting perspectives of applications to other matrix
models (2 matrix model).



2. Definitions and notations
From now on, we assume that V’(x) is monic of degree d > 1.

2.1 Loop functions

For k > 1, we define (the subscript ¢ means connected part or cumulant):

_ 1 1 1
= NF2 (¢ t St 2.1
Wil k) <ra31—M rCCQ—M rxk—M>C (2.1)
— _ Vi(xz1) — V] (M) 1 1
Uk(zy; 2o, ... = NP2 (tr Lt St 2.2
ACTEESRNE 7Y <f 1 — M rxg—M rmk—M . (2.2)
and their large-N limits:
Wk(.%'l, ‘e ,l’k) = ngo)(.%'l, ‘e ,l’k) = ]\}imooWk(xlj e ,l’k) (23)
Up(z1;22,. .., Tk) = U,go)(xl;mg, ce D) 1= A}imooﬁk(ml; X9y ..., Tk) (2.4)
as well as their formal 1/N? expansions (k > 1, h > 0):
Wiz, z) == Y NP W (@, ap) (2.5)
h=0
- h
Uk(xi;me,. .. 28) i= ZN*% U,g )(xl;xg,...,xk) (2.6)
h=0

Notice Ul(o) is a monic polynomials of degree d — 1, and as soon as k + h > 2, U,gh) is

a polynomial of degree at most d — 2 in ;. We have:
h h
UM (w1520, ) = ol Vi(a1) Wi (1, @) (2.7)
where Pol means polynomial part.
The functions W, are called loop-functions, because they are generating functions for
discrete surfaces with k boundaries, i.e. k loops.

2.2 Filling fractions

If the integral ([.1]) were to be considered as a convergent integral, the 1/N? expansion
would exist only in the so-called one-cut case (see [B} [[4]). Here ([L.I) is considered as a
formal power series, by its expansion in the vicinity of a minimum of the potential tr V/(M).
The potential V(z) has in general d = deg V'’ extrema, and thus, the potential Tr V(M)
can have extrema indexed by the number of eigenvalues of M lying in the vicinity of each
extrema of V(x). The formal perturbative expansion around such local extrema cannot
change the number of eigenvalues near each extrema. The fractions of eigenvalues near each
extrema of V are called filling fractions, and are thus moduli characterizing the vacuum
near which the perturbative formal expansion is computed. The filling fractions play an
important role in recent applications of random matrix models to string theory [[L6].



The filling fractions are denoted:
S
€1,€9,...,€, Zejzl. (2.8)
j=1

It is well known [f, [d] (and we recover it below) that the function Wi (z) is solution
of an algebraic equation, it has s cuts [agj_1,a9;], j = 1,...,s, which correspond to the
location of eigenvalues in the large-N limit. The condition that the filling fractions are
given can be written:

1
Vi=1,...,s, — Wi(z)de = ¢; (2.9)

2T Jlag;_1,a5;]

where the contour surrounds the segment [agj_l, agj] in the trigonometric direction.
Let us for a moment, use the method of [B, ] for finding the filling fraction conditions
for other loop functions.

If V(z) = >, tya®, from [f] we introduce the loop insertion operator!:

) =1 9
) _;; . (2.10)

we then have [P

0
Wit (21, .o, Tpy Tpg1) = W

W, 2.11
l'k+1) k(xla 71.]?) ( )

and thus, since the filling fractions are given parameters independent of V' and N, we must
have for all k > 1, h >0, h+ k > 1:

ijl,...,s, f W]ih)(l'l,l'g,...,xk)dxlzo. (212)
[a2j-1,a2;]

From the same argument, since we assume that there is no eigenvalue elsewhere in the
complex plane, we can write, for any m in the complex plane, away from the cuts:

% Wl(xl)dxl =0 (2.13)

(where the contour integral is a small circle around m) and thus:

7{ W,gh)(acl,xg,...,xk) dz; =0. (2.14)

# % is a formal notation which makes sense order by order in

the 1/x expansion, and eq (R.19) is perfectly rigorously proven.

I The loop insertion operator p



3. The one-loop function and algebraic geometry

3.1 The one-loop function

It is well known [Bf, 13, [L5, B] (and it is re-derived below) that the one loop function is
algebraic:

Wi(z) =

% (V@) ~ M(2)\/o(@)) (3.1)
1

(@) = 7 (V@) - M@)o (2)) (3.2)

where M and o are monic polynomials (remember V'(z) is monic), determined by:

1
Wi(x) ~ — (3.3)
T—00 I
and by (R.9), which can be rewritten as follows: let aq, ..., ags be the zeroes of o:
2s
o(x) = [[(x - a) (3.4)
i=1
we must have: 0,
J
Vjell,s—1], M(x)\/o(x)dx = 2ine; (3.5)
az;j—1

For a given s € [1,d), the equations (B.3) and (B.5) give a finite number of solutions for M
and o. Let us assume that we have chosen one of them.

3.2 More notations

For convenience we introduce myq, ..., m4_s the zeroes of M:
d—s
M(z) =[x —ma) (3.6)
=1

We also define for k > 1, h > 0, and h+ k > 1:

k
201 90
F]gh) (x1,...,2k) = <2kW]§h) (X1, . zK) + ﬁ) H o(x;) (3.7)
i=1
and:
Fr(xy,...,2x) == Fkgo)(ml,...,zk). (3.8)

It is well known that the Fj’s and F,gh)’s are rational functions of all their arguments

(see [B, B H).

Another useful notation is in terms of multi-linear differential forms:

Gr(z1,...,xp) := Wi(z1, ..., 2r)dey ... day (3.9)
and for higher orders:
G,(gh) (T1,...,2k) = Wéh)(xl, coyxp)dzy .. d (3.10)
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It is well known that they are all multi-linear differentials defined on an hyperelliptical
surface. All of them, except G; and G, have poles only at the branch-points (i.e. the
zeroes of o), and have vanishing contour integrals around the cuts.

All this is re-derived below.

3.3 Hyperelliptical surfaces

We need to introduce some basic notions of algebraic geometry [R5, 6.
Equation (B.1]) defines an hyperelliptical surface of genus s—1. Let y = V'(z) —2W (),

we have:
y? = M?(z)o(z). (3.11)

That equation defines a Riemann surface with two sheets (corresponding to the two deter-
minations of the square root). In other word, for each x, there are two values of y(z).
Let us define the physical sheet as the sheet where:

x % o(x) ~ +1 (3.12)

r—00

and the second sheet as the one where:

x % o(x) ~ —1. (3.13)

r—00

If x is a point in the physical sheet, let us note T the point corresponding to the same z in
the second sheet. By definition, we have:

o(T) = —\/o(x), M) = M(z), y(T) = —y(z), dz = dx . (3.14)
The branch points a; are the points where the two sheets meet, they are such that:
Vi=1,...,2s, a; = a;. (3.15)
Near a branch point a;, the surface is better parameterized by the local coordinate:

Tl(l') =Wr—a; = —Ti(f) (3.16)

ie.
T =a; + 77, dx = 21;dT; . (3.17)

In particular, the differential dz has a (simple) zero at x = a;.

Holomorphic differentials: Let L(x) be any polynomial of degree < s — 2. Since
\/o(x) has a simple zero at z = a;, the differential L(z)—22= has no singularity on the

Vo(z)

whole surface (neither near the branch points, nor at oo), it is thus called a holomorphic

differential. One has the following classical theorem: there exist a unique set of s — 1
polynomials of degree s — 2, which we note L;(x), such that:

L
Vi, je[l,s— 1]2 , % () dz = 2imdy 5 . (3.18)
lagi_1,a21] /()
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Lj(z)

Vo(z)

the L;’s form a basis of degree < s — 2 polynomials. For any polynomial P(x) such that
deg P < s — 2, we have:

The differentials dx are called the normalized holomorphic differentials. Notice that

s—1

P(x) - Z (i j[{azj—l,azﬂ PO('Q(U;)/) dx/) Lj(w) (3.19>

Jj=1

Notice that on the s cut, we have:

Li(@) e = 9in 3.20
- (3.20)

Vjell,s—1], ?é
l[azs—1,a25] V/

We define:
Ly(z) =0 (3.21)

so that (B.19) holds also with the sum on j running from 1 to s.

Normalized differential of the third kind: For any z’ on the curve, there exists a
unique meromorphic differential, noted dS(z,z’), which has only two simple poles in x,
located at z = 2’ and = = 2/, and such that:

dS(z,z") ~ do - + finite
rz—a' T — T
, dx .
dS(z,z") ~ — - + finite (3.22)

z—az! T —T

Vi=1,...,8—1, 7{ dS(z,2") =0
[agj—1,a2;]

Notice that dS(x,z’) is a meromorphic differential in the variable z, and a multi-valued
function of the variable 2.

It is easy to check that we have the following expression:

o(x’) 1 =
dS(z,2') = ol Cer > Ci()Lj(x) | do (3.23)
j=1

where

1 dx 1
Ci(z) .= — y{ _— 3.24
(R - (321

In this formula, it is assumed that z’ lies outside the contours [a2j—1,a2;]. One has to be
careful when 2" approaches some branch point a;. When 2’ lies inside the contour around
[a2j—1,az;], then one has:

517]' . 1 dx 1

0'(37/)  im [ag1—1,021] O'(Z') r—x

Ci(z) +

(3.25)

!/

which is analytical in 2’ when &’ approaches ag;_1 or ag;.



Fori=1,...,s, we define:

dSsi_1(z,2') := dSs(x, ") := dS(x,2") — Ll((x)) dx
Vo (@) 1 Li(z) &=

- - — Ci(2"\L:(x dx )
o(r) \z—a o (z) ; 3 (@) Ly(x) (3.26)

which is a one-form in z, with poles at * = ' and z = 2/, and which is analytical in '

when 2’ is close to ag;_1 or as;.

Bergmann kernel
For any 2’ on the curve, there exists a unique bilinear differential, noted B(x,z’), called
the Bergmann kernel, which has only one double pole in z, located at x = 2’ (in particular

no pole at = = ?), with no residue, and such that:

dx dz’

B(z,2") — + finite
xz—z’ (m — l‘l)z (327)
Vi=1,...,8—1, B(z,2)=0
z€lazj—1,a2;]
It is easy to check that B(z,z") = B(2/, x) and:
1 0 [ Vo(z)+o(x) "
B(z,') = NGO dx da’ 3 " — ;Cj(x')Lj(x)\/a(x’)
1., 0 dz p
_ 1., 90 2
zdx B <m_x,+dS(a:,:c)> (3.28)
It can be written:
/ / /
Bla,2) = dxdz n Q(z,2")dxdz (3.29)

2 —2')? Az — x)2\/o(x)\/o(z)

where Q(z,z') is a symmetric polynomial in z and 2/, of degree at most s, such that
Q(z,z) = 20(x) and 0 Q(z,2')| =z = o' ():

m/ — 2
Q(z,2") = 20(z) + (' — z)o’'(z) + g % S(x) + O(a' — z)3 (3.30)

where S(z) is called projective connection at x. We can write:
Qz,2") = 20(x) + (2/ — )0’ () + (x — 2/)? A(x,2) (3.31)
where A(x,2’) is a polynomial in both variables. We have:

B(z,z") 1 o(x)
dedr’  2(x — 2')2 N 2(x — 2')2\/o(x)\/o(x) *
o' (z) Az, 2')

A(x' — x)\/o(x)\/o(z) " 4y/o(x)\/o(z')

n (3.32)



4. Loop equations

Now, we will introduce a method for computing the Wéh)’s. It is based on the so-called

loop equations or Schwinger-Dyson equations, i.e. invariance of the integral ([.I) under

local infinitesimal change of variable.

4.1 Useful notations

Let K ={2,...,k}. For any j < k — 1 we denote:
K;j={ICK |#I=j}

and for any subset I € K; we define:

I:{il,ig,...,ij} g Tr Izl‘il,xiQ,...,l‘ij
as well as: ‘
j
o(zr) =[] /olxa)
=1
and

J
dry = deiz .
=1

4.2 Loop equations

The invariance of the matrix integral ([.1) under the change of variable M — M + ndM

(see B4, B4, 12, 5, 3. for detailed derivations):

1 1
oM = t
v — M I v — M
Jj=2
implies, to first order in 7:

k=1: Wl(.%'l)Q + ng(xl,xl) = V’(.%'l)Wl(.%'l) — Ul(l'l)

_ _ 1
k>2: 2Wq(x1)Wg(z1,...,z5) + WWkH_l(fEl,fEl,fEQ, cey ) F
k—2
+ Z Witi(x,er)Wi—j(x,ox-1) +
j=11eK;

i.e., to leading order in 1/N? we have:

k=1: W1($1)2 = V’($1)W1($1) — U1($1)

,10,

(4.5)
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k>2: 2Wy(z1)Wi(z1,...,zx) +

k—2
+Z Z Wisi(z1, 2n)Wi—j(z1, 25 -1) +
j=11€K;
k
0 Wk_l(l‘z,...,l‘j,...,l‘k)—Wk_1($2,...,$1,...,$k) .
DT -
= 8.%']‘ Tj —T1
=V (@)Wi(21, ..., x5) — Up(z1;22,. .., 25) .
Notice that it implies (B.1]) for k = 1.
Now assume k > 2, and using (B.1)), we rewrite:
1'1 VO CL‘l Wk L1y .- )—
= Z Z Witi(@r, 21)Wi_j(x1, 25 -1) +
j=1I€K;
k
0 Wi_1(xo,...,ziy...,x1) — Wi_1(x2,...,21,...,T
i gy k—1(22 j k) = Wi—1(z2 1 k)+

31‘j mj — T

4.3 Case k=2
For k = 2, ([£§) reads:

|

M(:El)\/ O'(.’El)Wz(xl,xz) = (Wl(-%'g) _ W1($1)> + UQ(.Tl; .TQ)

.5}
8
)

T2 — I

10 ([ M(zz)\/o(x2) — M(z1)
2019 To — X1
1 6 V/($2) - V’(ml) .
+§a—x2 ( Ty — 71 +U2($1a$2)
. 1 0 \/O' xg \/O' I
- _58—.%'2 (M(xl) Tr9 — T ) B
10 M() = M ()
2 8.%'2 < 0'(372) Tro — I1
10 [V -V’
+-— ( (z2) (x1)> + Us(z1; 22
2 8.%'2 Tro — I1

which can be written:

a(m)) .

o@D W1, 29) = — 9 (\/0(902)—\/0(1’1)>+R2(m1;m2)

2 6902 o — 1

M (zy)

(4.7)

(4.9)

(4.10)

where Ro(71;22) is a polynomial in z; of degree at most d — 2. From (R.14)), we know that

the Lh.s. has no pole at the zeroes of M, thus

Ray(z1;72) = M(21) Pa(71; 22)

— 11 —

(4.11)



where Py(x1;x2) is a polynomial in z1, of degree s — 2. We have:

X9 — I

10 o(r2) —/o(x
\/O’(Q?l)WQ(.%'l,.%'Q) = == \/ ( 2) \/ ( 1) —i—PQ(.%'l;xQ). (4.12)
2 31‘2
In terms of the function F» introduced in (B.§) we have:

Fy(x1,x9) 1 0 +o(x2) P2 (715 22) (4.13)
4\/0'(1'1)\/0'(1'2) 2y/o(x1) 6302 $1—$2) o(x1) .

which proves that Fj is a rational function of z1, and by symmetry, it is also a rational

function of zs.

Then using (R-19) as well as (B.19) and (B.24), we find Py:

then using (B.23):

F2($1,$2) o 1 6 dS(.Tl,.TQ) o B(:El,xg)

1
44 /o'(;pl), /g(gp2) 2 0x9 dzy - dzidzo 5 (.%'1 — x2)2

where we recognize B the Bergmann kernel introduced in (B.27). Finally, we have the

(4.15)

two-loop function in the form:

B(x1,22) 1 B(z1,73)
W- = — = —
2(1.1’1.2) dmlde (:L‘l — .TQ)Z dmldmg
(4.16)
or, using (20)
T1,T
Fy(x1,12) = H (4.17)

The result (f.16) or (f.13) is well known and can be found in many places in the litera-
ture [@} We have just presented one derivation for completeness. Now, let us move to
higher loop functions.

Remark: we can write

o(z) _ o(x)

(x — x1)?

Fy(x,z1) =2 + A(z, x1) (4.18)

r — T
where A(z,x1) is a polynomial in both variables. It implies:

o' (z o' (x)? T, %
Wa(z,2) = _SO'Exi * 160((:2)2 * ill(a(,x)) (4.19)

which is a rational function of x, with double poles at the branch-points.
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44 k=3
Starting from (|.§) for k = 3, i.c.

M(z1)\/ o(x1)W3(z1, 22, 23) = 2Wa (w1, 22)Wa (21, 23) +
+iW2($2,$3)—W2($1,$3) n

6902 Tro9 — 1
0 Wo(wa, x3) — Wa(w1,22)
— +
8.%'3 r3 — T1
—|—U3($1;$2,$3) (420)
and using the results for £ = 2, we get:
F3(z1,20,03) F2($1,902)F2(901,903)

o(xa)\/o(x3) M(x1)\/o(x2)\/0o(x3)
8 iWQ(I’Q,I’g) 4 8 iWQ(%’Q,l‘g) 4
M(Q,’l) 8.%'2 Tr9 — X1 M(.%'l) 8.%'3 Tr3 — X1
8 Us(w1; w2, 73)
M (1)

i.e. F3(x1,x2,23) is a rational function of z1, and by symmetry, it is a rational function of

(4.21)

all its arguments. Expression ({.20) clearly shows that F3 has no pole when z; = x9 or
x1 = x3. Moreover, from (R.14), we know that it has no pole at the zeroes of M. Thus
the only possible poles of F3 are at the branch points and at co. Notice that only the first
term in the r.h.s. of (f.21)) has poles at the branch points.

Before continuing, let us study the case k > 3.

4.5 k larger or equal to 3
Now assume k > 3. We start from ([L.§):

k—2
Vo Wil ax) = Y 3 Warlen 2 W@ o)
— M (1)
j=11€K;
k
PG Wit (21, 21
+Z k-1 HCK) w—1(z1, Tg {})+
P Ox; (x; —x1)M(21)
Uk(z1;2K)
+— 4.22

and we consider separately the terms corresponding to j = 1 and j = k — 2 in the r.h.s.,
and we write Y cp, = Zf_Q, we get:

YW,
Vo (z)Wi(z1, o) = Z Z Witi(zy, 21)We—j (21, 2K 1) N

=2 I€K,; M (z1)
) k (Wg(l'l,.%'i) + m> Wi1(z1, T —(3})
* Z; M(z1)
k
_1(zk) Uk(z1;2K)
n , 4.23
Z; x; (x; —x1)M(21) M(xq) ( )

,13,



This clearly proves, by induction on k, that for all k > 3, Fj(z1, k) is a rational function
of 1 (and by symmetry, of all its arguments), with poles only at the branch points and at
o0. We have just re-derived it in a way different from [B], P

Now, assume k>3. Consider the euclidean division of the polynomial Uy (x1; xa, ..., zk)
by M(z1): .
9-
Ur(z1;70K) = Neer) Pr(x1;2k) M(21) + Qi (215 7K ) (4.24)
O\TK

where deg P, = s — 2 and deg Qp, < d — s.
Thus, we have found that for any k£ > 3, we have:

Fi(z1, 2x) — Pe(w; k) Z Z Fjn VEL—j(x1, x5 —1)

(1, 21 Ri(z1:x 4.25
o) 2 2 2 T oleoMyotar) i) (429)

where Ry (z1;x k) is a rational fraction of x1 with no poles at the branch points neither at
oo (it has poles at the zeroes of M and at the z;’s).

4.6 Cauchy formula

Cauchy formula gives:
F, — Pr(x1; dx F — Pi(x;
k(T oK) — Pr(zi0k) Res, ., —2 k(2 x) — Pp(;7k) (4.26)
O'(.Z'K) r—T O'(.%'K)

where the integrand has poles only at the branch points. Therefore we may deform the

integration contour used to compute the residue, into residues at the branch points only:

Fi(z1,2x) — Pe(z1;20K) ZRestal 7_36 (Fi(z,zx) — Pp(z;7K)) (4.27)

using ([£.25) we get the recursion formula for the F}’s, for all k > 3:

1)F T, T
Fi(z1,2x) — Pr(2152K) ZRGS;}:HCL[ Z Z ]H ];(;1( — ;)( ) dr (4.28)
j=11€K;

Pi(x1,2xk) which is a polynomial in x; of degree at most s — 2, is computed with for-
mula (B.19).
Starting from (R.13), i.e.:

% 7Fk(m1’ mK) dl‘l =0 (4'29>
[a21—1,a2] U(ml)

we have:

_y{ Py(z1;xx)dxy _
[a21—1,a2] 0’(1’1)

- dxq o j+1($,$I)Fk—j(ﬂU7$K—I) "
= ZZ > ]é ReSe o = — M@)o ()

s k—2

Fj(z,2r)Fej(@, oK 1)

= o ZZUZ“§ j{am Laz] Vo (z1) j{m Las]  2(@1 —2)M(z)o ()

dx . (4.30)
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Notice that for ¢« = [, the contour of integration of x; encloses the contour of . We may
exchange the position of the two contours, by picking a residue at 1 = x, thus:

_% Pk(l'l;.%'[()da?l
[azi—1,a21] o(ry)

s k—2

Fji(z xf)Fk i@ xr-1) . dxy
2’L7T ZZ Z }{ M(z)o(x) I }imham} ( i

i=1 j=1IcK, [a2i—1,a2;] T — I‘) 0'(1‘1)

}{ Fiji(z, xr)Fe—j(z, k1) (4.31)
[agi—1,a21]

i= 1IeK 2M(z)\/o(x)o(x)

Using the function Cj(z) introduced in (B.24), we have:

_% Pk(.%'l;.%'K)d.%'l _
[a2i—1,a21] o(ry)

s k—2
= Fi (@, @) F—j(@, vk -1) . . 8i
- zZ:; ; Z %QQi—l,GQi} 2M(x)0<$) d <Cl( ) - m) (4'32)

and thus we have computed Pj:

s k—2

—Pp(z1;70K) = ZZ Z jé Fj+1 in\I}(F/; J(($> TR 1) dr X

i=1 j=11€K; [a2i—1,a2i]

s—1
X (M +)° Cl(m)Ll(m1)> : (4.33)

o(z) i3

4.7 The recursion relation

That gives the recursion relation for the F3’s:

Fi(r1;0K) = %ZZ Z j{ ’ Fj+1($,29§\i[)(f;/;;j((xm),x;(1) dxx

(4.34)

where it is important to remember that the term inside the bracket is analytical when
x approaches ao;_1 or ag;. This allows to write the contour integrals as the sum of two
residues around asg;—1 and as;.

It is interesting and more intrinsic to rewrite ([.34)) in terms of multi-linear differentials
G, on the hyperelliptical curve.

First, notice that a contour around a; in the hyperelliptical curve (r;(x) = v/ — a;
around 0) is twice the contour in the complex plane (x around a;), i.e. we will have an
extra factor 2 in the denominator.

,15,



Then, notice that G and F> differ by a term, which is an even function of the local
parameter 7;(z), i.e. which does not contribute to residues near the branch-points (this can
be checked separately for k£ = 3 and k > 3).

Thus we get the recursion relation for the Gp’s:

G ‘ B 2s k2 Res Gj+1($7$I)kaj(x7xK—I) ds.
W) = 303 3 Resgen 100 o)
P y(x)dx
i=1 j=1 IeKj
(4.35)

where now the residues are computed on the hyperelliptical surface (i.e. extra factor 2 in
the denominator), and dS;(x, ') is the abelian differential of the third kind introduced
in (B.26).

That recursion relation allows to compute Wy, in a tree-like recursion from residues of
lower loop-functions.

4.8 Solution of the recursion relation as cubic-Feynman trees

Equation ([.35) is conveniently represented with diagrams “& la Feynman”.
Let us represent the k-loop correlation function G (z1,...,x) as a black disk with &
legs:

X
2

AN

and introduce the following Feynman rules:

= Gk(xl,...,xk) (436)

X
k

Arrowed propagator: | X1 —»— X2 :=dS;(z1,x2)

Vertex: < X =1/(2y(z) dx)
Non-arrowed propagator | X1 —— X3 := X*Xz = Ga(x1,2)

=2-loop correlator:

Then ({.35) can be represented as follows

7

—_—
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Whose solution is clearly that the k-loop correlator G, is the sum over all plane binary
trees with 1 root and k — 1 leaves, with a skeleton made of oriented arrows (oriented from
root toward leaves), and whose k — 1 leaves are non-arrowed propagators finishing at the
x;'s with 2 < j < k.

Notice that two trees which differ only by the ordering of branches at a vertex give the
same contribution to Gy, so that instead of summing over plane trees, one can sum over
non-plane trees, with a factor 282

Let 7; be the set of plane rooted binary trees with & — 1 labeled leaves (za,...,k).

and let 7 be the set of non-plane rooted binary trees with k—1 labeled leaves (22, ..., xy).
We have: ok
Nipo = Card T 0 =k +11C), = F =2k (2k — 1)!! (4.37)
where Cj is the Catalan number which enumerates plane trees. And:
_ — K _p 2K!
Nk+2 = Card Tk+2 =2 Card 7;€+2 =2 F = (Zk — 1)” . (438)
For any given tree T' € T}, with root 1, leaves x; (j = 2,...,k), and with k—2 vertices
noted z, (v =1,...,k —2), so that its inner edges are of the form vy — v9 and its outer

edges are of the form v — 7, we define the weight of T as:

k—2 2s
1
W(T) = H Z Resmgﬁaiv W X

vertex v=1 i, =1

x 11 asi, (@, 2,) [ G, xy). (4.39)

inner edges v—w outer edges v—j

Thus we have:

Grlar,...,zp) =22 )" W(T) =Y W)

TeT, TeTy

(4.40)

G5 is thus given by N3 = 1 tree, G4 is the sum of N4 = 3 diagrams, G5 is the sum of
N5 = 15 diagrams, ...
4.9 Example: 3-point function

As an example, let us carry out explicitly the computation for the 3-point function.
Diagrammatically, we have:
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Eq. (1.28) can be written for k = 3:

Fy(z,29)Fy(x,23) o (x)
M(z)o(x)o!(z) (x—x1)

2s
F3(x1, 29, 73) = nggs dz + Py(x1, T2, 3) (4.41)
i=1

where P3 is a polynomial in 1. Using (f.1§), notice that Fy(a;,x) = Z((ZZ) + A(a;, ) is
finite, and that:
o'(z) o(x)
=2
xr —x1 (x — x1)?

— Fy(x,21) + A(z, 1) (4.42)

FQ(.T, .TQ)FQ(.T, .T3)
M(@)(x —1)%0' ()

2s
Fs(x1,x9,23) = 2Z%esdx
i=1

2 . FQ(.%',.Z'l)FQ(.%',.Z'Q)FQ(l',Hfg)
~ 2 Resd M(z)o(2)o' (z)

2s A(ac,l“ )F (m,x )F ($,:L‘ )
+;%§S dx ]\14(;)0(:3)20’(;) 3 + R3(z1, 22, x3) (4.43)

The first line has no residue at the branch-points (indeed, using (£.18]), notice that Fa(a;, x)
is finite), and the last line is a polynomial in x; (indeed A(z,z1) is), therefore:

FQ(.T, .Tl)FQ(.T, $2)F2(£L', 1‘3)
M(z)o(z)o’(x)

Fy(z1, 22, 73) = —ZRQQde + R (21,22, 73)

Fy(ai, 1) Fa(ai, v2) Fa(aq, x3)

= — —|—R3 T1,T2,T3 4.44

Z Mlar)o (ar)? ( ) (4.44)

where R3(z1, 2, 3) is a polynomial in 1, of degree at most s —2. Condition (P-12) implies
that R3(z1,29,23) = 0, thus:

2s
Z az,961 F2 (ai, x2)Fa(ai, x3)

— )J (az)2

F3(x1, 22, x3)

(4.45)

This is a generalization of what was found in [B], B ] for the one-cut case s = 1. As we
shall see just below, this agrees with what was found by [B3], [, f].
Let us redo this computation in a more intrinsic way. Start from ([L35) for k& = 3:

2s
G
G3(x1,22,23) = 22 Res,, GQ(méZQ(L);(Cx’x?’) dS;(z1,7) . (4.46)
i=1

Notice that both dS;(x1,z) and y(z) have a simple zero at x = a; thus,

dSi(.%'l,.%') _ ddei(xl,x)
y(x) dy(x)

+O(Vz — a;)
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_ B(zy1,z) + B(z1,7T) +oWE=a)

dy()
GQ(xh .YJ)
=2———— 4+ 0KWz—a;). 4.47
st oa=a) (1.47)
This implies:
2s
Ga (2, 22)Ga (2, 3)Ga(, 21)
Gs(xy,z2,23) = QZR‘I?S dzdy
(4.48)
This agrees with [B3, [LT], f] (our dy is half the dy of [f]). One can also write:
2s dl’z
Ws(x1, x2,23) = 2 Z P:Lles Wz, x0)Wa(z, x3)Wo(z, a:l)d—y . (4.49)
i=1

4.10 Example: 4 point function

Diagrammatically, we have:

X2
X
X >(4 2
2 X
3 X
X X X X 4
X =
1 3= 4 1 +4 x X 3 +4 X X
X 1 1
\ 4 X
X X 3
4 2

Explicit computation of ([.34) for k = 4 gives:

2
~ Fy(x3,0;)Fa (24, a)) Fy(x2,0:) Fa(z1, a;)
> Fy(ai, a) -

Fy(x1, 29,23, 24) = —

i#j=1 M(aj)o'(a;)? M (a;)o’(as)?
Fg(mg,aj)Fg(acg,aj)FQ(a' a')Fg(ac4,ai)F2(m1,al-) _

AT M) T M (@) ()2
F2(m2,aj)F2(w4’aj)F2(a' a')Fg(acg,ai)Fg(ml,ai) .

= M(a;)o’(a;)? " M(ag)o'(ai)?

7&
Z +
Z

(
(Fo(x3,0:)Fo (4, a:) Fo(ai, v2) Fo(ai, x1))’
M(a;)?0’(a;)?
Fy(x3,a;)Fa(xg, a;)Fa(a;, x9) Fa(a;, x1) "

(
1 M (a0 (a;)?

(M(ai)  Alaiai) | 50" (a:)
<M(ai) o'(a;) * 60’ (a Z)>- (4.50)

(2
+3

75]23
3

=

,19,



5. Higher genus

5.1 General case
Now, we don’t drop the 1/N? term in ([.d), and we expand to order h:

h
25w @)W () +

h—1
+W,§+1 )(961796179627---,$k)+

h
m h—m
+ Z Z WJ.(Jrl)(l'l,x])Wliij )(1'1,1'[(_[)—1—

r 0 W]gﬁ)l(‘r% sy Ly 7:Ek) - Wk(:li)l(l‘g, ey L1y 7:L‘k)
+> - =
= a-Tj Tj— I
= V'(acl)W,gh)(acl, cey ) — U,gh)(acl;mg, ceey Tk (5.1)
thus:
M(z1)y U(iﬂl)Wé V@1, 2x) =
h—1
=23 W @)W (a1, xk) + WY (@, @, 0x) +

k )
8 - - .
+> WY 4 U (2 a) | (5.2)

M(zy) Vo) W (@) = Y Wi @)w{™ @) + Wi (@, 20) + U (21) (5.3)

It is easy to prove, by double recursion on k and h, that

k
F]ih)(.%'l,...,l'k) :2k W]ih)(l'l,...,l'k)l—[ O'(.%'Z) (54)

i=1

is a rational function. Introduce the euclidean division of the polynomial U ,gh) (r1;2K) by
M(.%'l):

ka

g (1’ K)

where deg P,gh) = s — 2 and deg le) < d - s. (5.9) becomes:

Ulgh) (x1;72K) = Plgh) (r1;25) M(21) + ngh) (r1;2K) (5.5)

ka

———— PV (nak) =
o(zK)

() W (@1, 2) —
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s W @)W (21, k) +W1§i11)($1’m1’mm
M(ml) M (1)

k—2

=2 Z
" )W (21,0 1)
3N v ! +
m=0
k
Z

j=11IeK; M (1)

W,ﬁ'i)l(wK) - Wﬁﬁ@h Tr-{5})

< Ox; (z; — 21) M (1) +Q (71;7k) (5.6)

where the Lh.s. is a rational function of x1 with poles only at the branch points, therefore:

27]{)
\/ O 371 W .%'1,.%'[( 7P]§h)(1'1§1'1():

o(zk)

= Resxﬂaq — <\/ W P( )(1-7$K)>
2s

= Z Resz—q, _dw <\/O’(.’E) W,gh)(ac,xK) - P,gh) (m,xK)>
i=1 e

= i Res dix 2 }S Wl(him)(m)W]gm)(x,xK) 4 W]gizl)(l',l‘,aj'[()
— T—a; T —x 0 M(.%') M(x)
2s h k=2 (m) (h—m)
W (x a?])W . (x TK_T)
J+1 k—j )
+ Z Resx—m Z Z (x) + (57)
i=1 m=0j=1I€K;
2s k h h h
+Z Res Z 9 Wli )1 (zx) — W/g_)1($7371(7{j}) N ng )(ac;xK)
i=1 Tha-e = 0% (z; — ) M(x) M (x)

Two terms in the last line have no pole at x1 = a;, and the other term in the last line

combines with other lines so as to transform Ws in F5. Thus we get:

) 1 2s da h k—1
F.V(r1,2K) = 3 ;Resmﬂai pra— mzzojo(l — 0m,005,0 — Om h0j k—1) X

IGKJ'
2s (h—
1 dx Fk+1 (SL‘,CL',(L'K)
3 zzl Reso—a, 7 x  M(z)o()
+Pl§h) (1‘1;1'[() (5.8)

where Plgh) (x1; ) is obtained from (B.19) in a way very similar to what we have done to
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leading order. Finally we find:

Gy @ e ax)
y(x)dz
2s h—1 (h—m) (m)
G T (@)Gy (@, zk)
+2 Z Resg—.q, Z dSi(zy,x) o) de

hk2

+Z Resga, D D Y dSi(z1,x

m=0 j=1I€K;
G( )(x a:I)G,(C_j )(m,a:K_I)

2s
G,gh) (x1,2r) = Z Resy—q; dSi(z1,x)
i=1

Jj+1
) y(z)dx
(5.9)
where one should notice that the first line correspond to j = 0 and j = k — 1 in the second
line.
Let us represent the order N 2" k-loop correlation function Glgh) (x1,...,xk) as a black
disk with k legs and h holes:
%
X, _—
=G (2, .., a) (5.10)

g+l-h

which means that G,(Ch) is obtained by summing over all Feynman graphs with k external
legs and h loops.

The set %(h) of all possible graphs with k external legs, and with h loops, can be
described as follows: First, draw all rooted skeleton trees (i.e. trees whose vertices have
valence 1,2 or 3), containing k + 2h — 2 edges. Draw arrows on the edges, oriented from
root toward leaves (see figure []). Then draw, in all possible ways, k — 1 external legs, and
h inner edges, with the constraint that all the vertices of the whole graph have valence 3,

and so that an inner edge can be drawn only between a vertex and one of its descendents
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Figure 1: The 3 skeleton trees contributing to '2'2(2), i.e. with k 4+ 2h — 2 = 4 edges.
4 aja—/—b—»—Q s, —@a—@
44@ 4—»—@4>J4>—Q 4%—@

- 4 P PN .

ZJS P H%f_p
EJ+Q

Figure 2: All the possible ways of drawing k — 1 = 1 external leg and A = 2 inner edges, so that
the graphs are trivalent, and that inner edges never connect different branches. Notice that all but
one graph have symmetry factor 4, and one has 2.

(inner edges can never connect different branches of the tree), see figure § for the example
k = 2, h = 2. Then, each such graph has a symmetry factor.
We have (see appendix [A)):

3(h 1)

N,ih) = Card’]}g(h) = sp, (k —1)14%1 ( ko1

Tk > (5.11)

where s, = Nl(h) is the number of one-leg graphs in a usual ¢> field theory. The generating
function s(x) = >.7° , sp2"~! is computed in appendix [A] in terms of Airy function. We
have:

81:1, 8225, 83:60, (5.12)

In particular for genus h = 1:
NV = Card T,V = aF 1 (k- 1)1, (5.13)

Similarly to ({.40):

G (1, o) = > W(T)

TeT,™

(5.14)
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where the weight W was defined in (J.39). The residues must be computed in the inverse
order of arrows, i.e. starting from the leaves of the arrowed skeleton tree, up to the root
(since all vertices are covered by the arrowed skeleton tree, this is always possible, and
defines a unique way of computing the weight of a given graph).

5.2 Example: one-loop function, genus one

Let us carry out explicitly the case k = 1, h = 1, and recover the result of [l R0, 1}, [9, [LO]:
In that case, (b.1]) reads:

(1)
Vo) W (zy) = Wz(%ﬂ]ﬁ\})(;)[fl (21) (5.15)

The r.h.s. is clearly a rational function of z1, and from (R.14), we know that the Lh.s.
has poles only at the branch-points , and at co. Introduce the euclidean division of the

polynomial Ul(h) (1) by M(z1):

U1 (21) = PV (1) M(21) + Q1 (1) (5.16)

where deg Pl(l) = s —2 and deg le) <d-—s.

We may thus write:

J(ml)Wl(l)(ml) _ p1<1>(m1) = Resga, xd_if”xl (Vo(z) Wél)(m) — Pl(l)(x))

dx
— ZReSJ»’—’ai P (Vo(x) Wél)(x) — Pl(l)(x))
i=1
S Res, 17 W) £ Q1)
P T — M(z)
2s
dx  Wh(z,x)
_ - _ 1
Zlees ‘o —a M) (5.17)
It clearly gives:
(1) 2 Ga(z, )
1 2(,
- o 22 g ) 1
Gy’ (z1) ;Resx () dSi(z1,x) (5.18)

Diagrammatically we have:

One can check that this result is identical to the function Wl(l)(x) computed in [fl, [[9, [0].
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5.3 Other examples

Similarly we have:

and at genus 2 we have:

X
X 1 X
) : 14»%+24’_©+Q +2i@

and so on...

6. Example, One-cut case s = 1, i.e. genus zero curve

We write:

o(x)=(x —a)(x —0). (6.1)
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It is convenient to map the genus zero hyperelliptical surface into the complex plane with

the rational map:

+y(A+27hH (6.2)
b—a

(6.3)

The x-physical sheet is sent to the exterior of the unit disc in the A-plane, and the z-second
sheet is sent to the interior of the unit disc in the A-plane. We have:

a(z(\) =v(A=A71). (6.4)
With this parameterization, all correlation functions are rational functions of the \’s.

6.1 Recursion relations

All Py’s are identically vanishing. We have the formula:

2z — b 2ab
Fy(w1,29) = 2v/0 (22 0 \/TQ 122 — (a +b)(z1 + 22) + 2a

81‘2 (:L‘l — .TQ) (1'1 - $2)2
Fy (1 :——Res ZZ ]+1xac[ JEhy (@, 05 1) dr for k>3
ot a; (x —x1)M(x)o(z) -
j=1I€K;
(6.5)
and for k +h > 1, (5.9) gives:
2s h—1 ;5(h—m) (m)
) —9 i 1 k ’
w (T, 7K) ZZ:; Resy—q, mZ:O RN dx+
2s ho k-2 (m) (h
Fo(z,an)Fy . (x,2k—1)
Resy_a; 7t J d
PR ) ) ) S e
i=1 m=0 j=1IeK;
2s (h—1)
F ($,$,$K)
+ Resg—aq; ktl dzx
2 (o1 — ) M@)o (@)
(6.6)
6.2 2 point function
The 2-point function can be written as:
o 0 1 0 0 A1 — A2
W- =————In(A — A — 1 6.7
2(.%'1,.%'2) 8$1 8$2 n( ! 2 ) axl 8$2 . <561 — X9 ( )
where
=yA+ATY, =+ A (6.8)
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or:

Wa(zr,2s) = — 1 L [ Vol@) = Volw) i
_ 1 N 2z129 — (a + b)(x1 + x2) + 2ad . (6.9)

2(x1 — 22)? 4wy — 22)%\/0(x1)\/0(22)

In particular we have:

(a —b) (b—a)
F: = (b = 6.10
2(a,$) (x—a)’ 2( ,:L‘) (.%'—b) ( )
The polynomial A(z1,29) introduced in (B.31]) vanishes identically, and we have:
(b—a)
= . A1
Wz(x,l‘) 160’(1‘)2 (6 )
All this is well known, see for instance [f.
6.3 Other correlation functions
We just give some examples of applications of the general theory described above:
Fy(x, ) Fo(w, 23)
F: = — R d
o) = s (ST ) o
. FQ(CL,CL‘Q)FQ(CL,IE3) _ FQ(b, x?)FQ(b’ ‘T3)
(@ —z1)M(a)(a—0b) (b—z1)M(b)(b—a)
_ b—a B b—a (6.12)
(a—wz1)(a—x2)(a—a3)M(a) (b—x1)(b—x2)(b—x3)M(b)
i.e.
(a—z1)( 1)( )M(a) — (b—z1)( 1)( )M (b)
a—z1)(a—z2)(a—x3)M(a b—x1)(b—x2)(b—x3)M(b
Wg(.%'l,.%'g,.%'g) = (b—a) ! 2 2 (6.13)
8\/o(x1)\/o(w2)\/o(w3)
which is the usual of [f.
dx
1 — -
Vo(x1) W (x1) = Resgp Wa(z, x) 3o — M (@)
(b—a)? dx
32 ©Pab (x1 — )M (x)o(z)?
(b—a)? dz 1
32 = (x —a)? (r1 — )M (z)(xz — b)? *
(b—a)? dx 1
R 4
T N G SR (o — o) M) (@ —a)?
B (b— a)2 1 ! N
32 (x1 —2)M(z)(x - b)2) |,_,
(b—a)? 1 !
6.14
T \Garee-a) |, (o1




(b—a)? ( 1 —2z1 —b+3a  M'(a) 1 >+
32 M(a) (a —b)3(z1 —a)?> M(a)? (a —b)?(x1 — a)
+(b—a)2< I —2z3—a+3b  M(h) 1 >
32 M) (b—a)?(x1 —b)2 M(b)? (b—a)?(z1 —b)

which again agrees with [] and other results in the literature.

7. Conclusions and prospects

In this article, we have found a ¢3 Feynman graph formulation for computing all correla-
tions functions to all powers of N in the one-hermitian matrix model. First, it would be
interesting to find out to which field theory it corresponds. One is tempted to compare
with Liouville’s theory (which is not cubic) or to a fermionic theory.

We claim that this approach is more efficient for actual calculations, than the method
existing previously in the literature [B, f. Indeed, in B, B}, one has to construct the cor-
relation functions recursively, by expanding them on basis functions which are themselves
constructed recursively by taking derivatives with respect to the potential. For instance,
one does not get any simplification in the method of [P, ff] by assuming an even potential,
or by assuming a quadratic potential. The method presented here, works for fixed potential
(for instance quadratic), and does not need to construct any basis of functions.

Another important point for the method presented here, is that it is expressed in terms
of geometrical fundamental objects on the spectral curve. This is another evidence of the
deep link between tau functions and complex geometry.

There are other expressions in the literature involving Residues of geometrical objects
(for instance [BY, B3, B, A, [7, [9, BY, B0]), namely, only the Bergmann kernel and not the
abelian differential. However, we claim that it should be simpler to compute the residue of
a function with a simple pole (the abelian differential), than the residue of a function with
a double pole (Bergmann kernel).

Moreover, the whole procedure described here, can be applied with very small adap-
tations to other matrix models, in particular the 2-matrix model, and to non-hermitian
matrix models (in particular 5 = 1, 2,4 models), this work is in progress and will be avail-
able shortly [B4]. In the 2-matrix model with potentials of degree dy + 1 and dy + 1, the
computation of correlation functions of the first matrix only involves dg vertices (i.e. cubic,
quartic, ..., do + 2-legs—vertex), instead of only one cubic vertex equal to 1/2y(x) for the
l-matrix model. This will be further explained in [4].

The observable we have not computed in this article is the free energy:

_ 1 >
Goi=—zlnZ:=) N7 G (7.1)
h=0

The free energy does not appear in the loop equations. It satisfies:

h
i

8V(.Z'1) = 1‘1) (7.2)
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therefore, in order to compute the free energy, one has to integrate with respect to the
potential, i.e. one can no longer keep the potential constant. One would reasonably make
the following conjecture for h > 2:

G — S w) (7.3)
TeT™

for example for h = 2

unfortunately, these Feynman graph don’t make sense (the abelian differential diverges
at coinciding points). The conjecture is that the G(()h) are related to traces of powers of
the laplacian on the spectral curve. For instance it is known that G(()l) is related to the

determinant of the laplacian [[L9], [LO].
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A. Cardinal of 7,

The cardinal of 7 and of %(h) can be computed by setting W =1 in (}1.4() and in (pb.14),
and then using the recursion relations (§.35) and (p.9).
One thus gets for k£ > 3:

k—2

k—1
No=1, Ne=)», < ; ) Nji1 Ny (A.1)
j=1
writing:
N
=0, m=1 = (A2)
(A1) becomes for k > 2:
k
k=D T ke (A.3)
7=0
We introduce the generating function:
o0
R(z) =) rpa* (A.4)
k=0
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and thus (A.J) becomes:

R(x)—xZRz(ﬂU) (A 5)
whose solution is: o 1
S LI

which implies:

(—4)k <%> (_1>k+1 221@—1% (_%) e (% _ k) _ 9k—1 (2k —3)! _ 2k -2

Tk T Kl K Kk -1
(A.7)
and thus, we obtain (}.37)
2k — 4!
N, =222k -5 A8
(k-5 = = (A8)
For higher genus, we have for £k > 1 and h > 1:
0 NB-D Sl h
N =0, NP =N+ > ( ) ﬁl) N}gfjm) (A.9)
j=0 m=0
writing:
N
0 h k+1
rO=0, .= - (A.10)
(A.9) becomes for k >0, h > 1:
h m h—m
r,g) (k + rkH)—i—ZZr( )r,(cj ). (A.11)
j=0 m=0
We introduce the generating function:
— S (h) .k
Ry(x) => ra (A.12)
k=0
and thus ([A.11)) becomes for h > 0:
h
Ro(z) = R(x),  Rp(@) = Rj_y(2) + Y Ru(x) Ryop(2) (A.13)
m=0
which can also be written for A > 1:
h—1
(1= 2R(x)) Ru(2) = By (2) + 3 Run() Rn(@) (A.14)
m=1
using ([A.G), it is easy to see, by induction on A that for h > 1 one has:
3h—1
Rp(x) =sp, (1 —4x) 2 (A.15)
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where the coefficients s, obey for h > 1:

h—1
s1=1, sp=2(3h —4)sp_1 + Z SmSh—m
m=1
or, if we define sg := —1/2, it can be written for any h > 1:

h
=2(3h —4)sp_1 + Z SmSh—m

m=0
we introduce the generating function:
o0
S(z) == Z spah
h=0

it obeys:

If one writes

—2/3
§=
and
S(x) = —x3h(€)
one has:

€= h*(&) + ()

whose solution is;

ey = A ftdte’§+t5 B \/Eftdteﬁg/z(f“) o3 [rdtessC 5
Ai%) [dte” e fdtegg/g(_é"'t) 2 fdtei(_é‘”)
and thus ,
S(e) = -1 [tdtessCTH) g ftdte8x( a
T) = ==
2 fdtGSz ) 2 fdteSac( 2= ﬁf’)
or
3
1 Jtdt e_é -
S(m):_i_\/}fd +2 J/xt3
te"2e 3
h+1 _ 42
S(m) B _1+ Zh OW fdt t2(3h+2)e t°/2
2 zh "0 32h (2h T f dt $2(3h) o—t2/2
zh T (6h+3)!! " (6h+4)!
1 Zh OW 1 Zh 0 32AFT 23h+2((2h+1))|(3h+2)[
S(x) = 3t 1 Fohyr - g 7 ah (6h)! '
+ 2 he1 g T 2 h=0 TG (SR AT
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(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)



In the end we have:

N,gh) := Card ’];C(h) = s, (k — 1)14%1 < 3(h2_: jlk B 1) (A.28)
The whole function is thus:
R(z,z) = Z Z Néh)wkzh = Z Ry (z)2"
k h h
22 ¢
__ Jdtter 5 eit) (A.29)

fdt e—%t?’ 63(1_41:)
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